

-Série N^0 3-----

____2017 - 2018

Exercice 1 : Soit (PC) le problème de Cauchy donné par :

$$(PC) \begin{cases} y'(t) + 10y(t) = 0 \\ y(0) = y_0 > 0 \end{cases}$$

- 1. On suppose que (PC) admet une solution unique. Calculer cette solution (exacte);
- 2. Soit h>0 un pas de temps donné, on pose $t_n=nh$ pour $n\in\mathbb{N}$ (en particulier $t_0=0$) et y_n une approximation de $y(t_n)$. Par la suite, nous présentons la méthode dite de Cranck-Nicolson : En intégrant l'équation différentielle entre t_n et t_{n+1} puis en utilisant la méthode du trapèze pour calculer $\int_{t_n}^{t_{n+1}} y(t)dt$ donner le schéma permettant de calculer y_{n+1} à partir de y_n ;
- 3. Montrer que la suite $(y_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera la raison r (en fonction de h). Puis, Montrer qu'elle vérifie |r| < 1 pour tout h > 0;
- 4. Sous quelle condition sur h > 0 le schéma génère-t-il une suite positive? Donner, alors, l'expression de y_n en fonction de n.

Exercice 2 : Considérons le problème de Cauchy : trouver $y:[t_0,T]\longrightarrow \mathbb{R}$ tel que

$$\begin{cases} y'(t) = f(t, y(t)), & t > t_0 \\ y(0) = y_0 \end{cases}$$

 $\begin{cases} y'(t)=f(t,y(t)), & t>t_0\\ y(0)=y_0 \end{cases}$ Supposons que l'on ait montré l'existence d'une unique solution y. Le principe des méthodes numériques est de subdiviser l'intervalle $[t_0, T]$ en m intervalles de longueur $h = \frac{T - t_0}{m} = t_{i+1} - t_i$. Pour chaque noeud $t_i = t_0 + ih$, (1 < i < m) on cherche la valeur inconnue y_i qui approche $y(t_i)$. Rappelons que l'ensemble des valeurs $\{y_0,y_1,...,y_m\}$ représente la solution numérique du problème. Dans cette exercice on va construire des nouveaux schémas numériques basés sur l'intégration de l'équation différentielle y'(t) = f(t, y(t)) entre t_i et t_{i+2} :

$$y(t_{i+2}) - y(t_i) = \int_{t_i}^{t_{i+2}} f(t, y(t)) dt.$$

- 1. En utilisant la formule de quadrature du point milieu pour approcher le membre de droite écrire un schéma numérique explicite permettant de calculer y_{i+2} à partir de y_{i+1} et y_i . Notons que ce schéma a besoin de deux valeurs initiales; on posera alors $y_0 = y(0)$ et y_1 sera approché par une prédiction d'Euler progressive;
- 2. En utilisant la formule de quadrature de Simpson pour approcher le membre de droite, écrire un schéma numérique implicite permettant de calculer y_{i+2} à partir de y_{i+1} et y_i ; Notons que ce schéma a besoin de deux valeurs initiales; on posera alors $y_0 = y(0)$ et y_1 sera approché par une prédiction d'Euler progressive;
- 3. Proposer une modification du schéma a la question précédente pour qu'il devient explicite.

Exercice 3 : On considère le problème de Cauchy sur l'intervalle [0, 10], définie par :

$$\begin{cases} y'(t) = -y(t), & t > 0 \\ y(0) = 1 \end{cases}$$

- 1. Calculer la solution exacte du problème de Cauchy;
- 2. Soit h le pas temporel. Écrire la méthode d'Euler explicite pour cette équation différentielle ordinaire (EDO);

3. En déduire une formulation du type :

$$y_{i+1} = g(h, i)$$

avec g(h, i) une fonction à préciser (autrement dit, l'itérée en t_i ne dépend que de h et i et ne dépend pas de y_i);

- 4. Utiliser la formulation ainsi obtenue pour déterminer les solutions :
 - obtenue avec la méthode explicite d'Euler avec h = 2.5,
 - obtenue avec la méthode explicite d'Euler avec h=0.5.

Exercice 4: Une deuxième approche pour la résolution numérique des équations différentielles consiste à utiliser le calcul numérique de la dérivée et de l'utiliser pour approcher $y'(t_i)$. Soit f une fonction supposée derivable sur un intervalle [a,b] et $(i)_{i=0,\dots,n}$ une subdivision de [a,b] en n sous intervalles de même amplitude $h=\frac{b-a}{n}$, une valeur approché de $f'(x_i)$ peut être donnée par l'une des trois formules :

$$D_1: f'_d(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} i = 0, ..., n - 1$$
$$D_2: f'_g(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} i = 1, ..., n$$

1) Une fonction f est donnée par les valeurs suivantes :

$$x_i$$
 1 2 3 4 5 $f(x_i)$ 2 4 8 16 32

- a. Calculer, de deux manières différentes, une valeur approchée de f'(3),
- b. Sachant que f est définie par $f(x) = 2^x$, calculer f'(3) et comparer la valeur exacte et les valeurs approuchées.
- 2) On considère le problème de Cauchy suivant :

$$(P) \left\{ \begin{array}{ll} y'(t) = f(t, y(t)) & t \in [0, T] \\ y(0) = y_0 \end{array} \right.$$

Soit $(t_i)_{i=0,\dots,n}$ une subdivision de [0,T] avec $t_i=0+i(\frac{T-0}{n})$, une solution approchée $\{y_0,y_1,\dots,y_n\}$ du problème (P) peut être obtenue est utilisant la dérivation numérique de la manière suivante :

- a. Écrire l'équation différentielle pour $t = t_i$ puis utiliser D_1 pour reformuler l'équation différentielle en une relation entre $y(t_{i+1})$ et $y(t_i)$;
- b. En utilisant l'approximation $y_i \simeq y(t_i)$, formuler la méthode de résolution ainsi obtenue (dite méthode d'Euler explicite);
- c. Formuler la méthode d'Euler implicite obtenue en utilisant la définition D_2 au lieu de D_1 ;
- 3) On considère le problème de Cauchy suivant :

$$\begin{cases} y'(t) = 1 + y(t) & t \in [0, 1] \\ y(0) = 0 \end{cases}$$

- a. Montrer que le problème admet une solution unique. Donner l'expression explicite de cette solution.
- b. Calculer des valeurs approchées de y(0.1), y(0.2), y(0.3),...,y(1) en utilisant la méthode d'Euler explicite avec h=0.1.
- c. Calculer des valeurs approchées de y(0.1), y(0.2), y(0.3),...,y(1) en utilisant la méthode d'Euler implicite avec h=0.1.

Les documents relatifs à ce cours sont disponibles sur : www.ferrahi.ma

Equité des Saignage de Tétauen, Département de Methématiques, DD 2121 M'Hannach II, 02020 T