

-SÉRIE N^0 2————

-2020 - 2021

Exercice 1: On considère une fonction f définie sur l'intervalle [2,2.4], dont on connaît les valeurs suivantes :

$$f(2) = 5.2$$
, $f(2.1) = 6.4$, $f(2.2) = 5.8$, $f(2.3) = 6.1$ et $f(2.4) = 6$

- 1) Établir le tableau des différences finies de f;
- 2) En déduire le polynôme d'interpolation de Newton de f d'ordre 4, associé aux points $x_0=2$, $x_1=2.1, x_2=2.2, x_3=2.3$ et $x_4=2.4$. Peut-on donner, à partir du tableau précédent, les polynômes d'interpolation par rapport aux points x_0, x_1, x_2 et x_3 ? et par rapport aux points x_1, x_2, x_3 et x_4 ? Expliquer la réponse.
- 3) Donner une valeur approchée de f(2.25) et donner une majoration de l'erreur $|f(x) P_4(x)|$ si f est de classe C^5 .

Exercice 2:

Pour calculer le zéro d'une fonction f(x) inversible sur un intervalle [a,b] on peut utiliser l'interpolation : après avoir évalué f sur une discrétisation x_i de [a,b], on interpole l'ensemble $(y_i=f(x_i),x_i)_{i=0}^m$ et on obtient un polynôme p(y) tel que : $f(x)=0 \Leftrightarrow x=p(0)$.

- 1) Utiliser cette méthode pour évaluer l'unique racine r de la fonction $f(x) = \exp(x) 2$ dans l'intervalle [0,1] avec trois points d'interpolation;
- 2) Comparer ensuite le résultat obtenu avec l'approximation du zéro de f obtenue par la méthode de Newton en 3 itérations à partir de $x_0 = 0$.

Exercice 3:

La division Euclidienne d'un polynôme V par un polynôme W non nul consiste à écrire (d'une manière unique) V sous la forme V=Wq+r où q et r sont deux polynômes, le second vérifiant deg(r)< deg(W); q est le quotient de la division euclidienne de V et W et r le reste de cette division.

- 1) Montrer que si $W(x) = (x a_0)(x a_1)(x a_d)$ alors r est le polynôme d'interpolation de V aux points $(a_0, a_1, ..., a_d)$;
- 2) Utiliser une division euclidienne pour calculer le polynôme d'interpolation de Lagrange de $V(x) = x^5 3x^4 + x 3$ aux points -1, 0, 1, 2. Vérifier le résultat obtenu.

Exercice 4: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2 - 3x^2$:

- 1) Calculer le polynôme P_0 qui interpole f au point d'abscisse $x_0 = 0$;
- 2) Calculer le polynôme P_1 qui interpole f aux points d'abscisse $x_0 = 0$ et $x_1 = 1$;
- 3) Calculer le polynôme P_2 qui interpole f aux points d'abscisse $x_0 = 0$, $x_1 = 1$ et $x_2 = 2$;
- 4) Calculer le polynôme P_n , n > 3 qui interpole f aux points d'abscisse $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, \cdots , et $x_n = n$. Est-ce que le résultat est vrai pour une fonction f quelconque.

Exercice 5 : Soit f une fonction de classe C^3 , définie sur [0,3] et à valeurs réelles.

- 1) Déterminer le polynôme d'interpolation d'ordre 2 de f, noté $P_2(.)$, qui prend les même valeurs que f(.) en x=0,1,3;
- 2) Déterminer la méthode de quadrature élémentaire obtenue en remplaçant l'intégrale de f(.) sur [0,3] par celle de $P_2(.)$;
- 3) Montrer que l'ordre de la méthode est égal à 2.

Exercice 6: On se place sur l'intervalle [-1, +1]:

- 1) Calculer les polynômes de base de degré 3 associés aux points $\{-1, -\frac{1}{3}, \frac{1}{3}, 1\}$;
- 2) En déduire le polynôme d'interpolation, P_3 , de degré inférieur ou égal à 3 d'une fonction f définie sur [-1,+1], associé aux points $\{-1,-\frac{1}{3},\,\frac{1}{3},\,1\}$;
- 3) Décrire la méthode de quadrature sur [-1, +1] obtenue en remplaçant l'intégrale de f par celle de P_3 . Quel est l'ordre de cette méthode?

Exercice 7:

Soit f une fonction $C^1(\mathbb{R},\mathbb{R})$. On se donne les points $\{x_i\}_{i=0}^m$ de subdivision uniforme de l'intervalle [a,b] définis par $x_i=a+ih$ avec $h=\frac{b-a}{m}$. Le but de l'exercice est de trouver une formule de quadrature composite pour approcher l'intégrale $\int_a^b f(x)dx$:

- 1) Écrire le polynôme P(.) qui interpole f aux points 0 et 1;
- 2) En déduire une formule de quadrature basée sur l'approximation : $\int_0^1 f(x)dx \simeq \int_0^1 p(x)dx$ et étudier le degré de précision de cette formule de quadrature ;
- 3) A l'aide d'un changement de variable affine, déduire une formule de quadrature pour l'intégrale $\int_{x_i}^{x_{i+1}} f(x)dx$;
- 4) En utilisant le résultat au point précédent, proposer une formule de quadrature composite pour le calcul approché de l'intégrale $\int_a^b f(x)dx$. Quelle méthode de quadrature reconnaît-on?

Exercice 8 : Estimer $\int_0^{5/2} f(x) dx$ à partir des données suivantes :

\boldsymbol{x}	0	1/2	1	3/2	2	5/2
f(x)	$\frac{3}{2}$	2	2	1,6364	1,2500	0,9565

en utilisant:

- 1. La méthode des rectangles à gauche composite;
- 2. La méthode des rectangles à droite composite;
- 3. La méthode des trapèzes composite.

Exercice 9:

Estimer, à l'aide des théorèmes du cours, le nombre de sous-intervalles n nécessaire pour obtenir une approximation de :

$$I = \int_0^1 \frac{4}{1+x^2} dx$$

avec une erreur moindre que 10^{-2} , en utilisant :

- 1. La méthode du point milieu combinée;
- 2. La méthode des trapèzes combinée;
- 3. La méthode de Simpson combinée;

Commenter les résultats trouvés.

Exercice 10 : On considère le problème de Cauchy suivant :

$$\left\{ \begin{array}{ll} \mathbf{y'(t)}\!\!=\!\!\mathbf{t}\!\!+\!\!\mathbf{y(t)} & t \in [0,1] \\ \mathbf{y(0)}\!\!=\!\!1 \end{array} \right.$$

- Calculer des valeurs approchées de y_0 , y_1 , y_2 et y_3 en utilisant la méthode d'Euler explicite avec h = 0.1.
- Sachant que la solution exacte est donnée par $y(t)=2e^t-t-1$, Calculer l'erreur d'approximation pour les valeurs approchées calculées précédemment. Comment varie cette erreur en fonction de i?

Exercice 11:

Soit (PC) le problème de Cauchy donné par :

$$(PC) \begin{cases} y'(t) + 10y(t) = 0 \\ y(0) = y_0 > 0 \end{cases}$$

- 1. On suppose que (PC) admet une solution unique. Calculer cette solution (exacte);
- 2. Soit h > 0 un pas de temps donné, on pose $t_n = nh$ pour $n \in \mathbb{N}$ (en particulier $t_0 = 0$) et y_n une approximation de $y(t_n)$. Par la suite, nous présentons la méthode dite de Cranck-Nicolson : En intégrant l'équation différentielle entre t_n et t_{n+1} puis en utilisant la méthode du trapèze pour calculer $\int_{t_n}^{t_{n+1}} y(t) dt$ donner le schéma permettant de calculer y_{n+1} à partir de y_n ;
- 3. Montrer que la suite (y_n)_{n∈N} est une suite géométrique dont on précisera la raison r (en fonction de h). Puis, Montrer qu'elle vérifie |r| < 1 pour tout h > 0;
- 4. Sous quelle condition sur h > 0 le schéma génère-t-il une suite positive ? Donner, alors, l'expression de y_n en fonction de n.