

SMP3: Analyse Numérique et Algorithmique

-SÉRIE N^0 2———

-2016 - 2017

Exercice 1 : Construire le polynôme P_3 qui interpole les points (0,2), (1,1), (2,2) et (3,3) en utilisant successivement les trois méthodes (directe, Lagrange, Newton).

Exercice 2 : En utilisant la méthode la plus rapide répondre aux questions suivantes :

- 1. Calculer le polynôme d'interpolation de la fonction $f(x) = \cos(x)$ en utilisant les trois points $x_i = \frac{\pi}{2}i$ avec i = 0, 1, 2.
- 2. Calculer ensuite le polynôme d'interpolation de la même fonction en utilisant les quatre points $x_i = \frac{\pi}{2}i$ avec i = 0, 1, 2, 3 (c'est à dire en ajoutant le point $x_3 = \frac{3\pi}{2}$).

Exercice 3 : Trouver le polynôme de l'espace vectoriel $Vec\{1+x^2, x^4\}$ (engendré par les deux vecteurs $1+x^2$ et x^4) qui interpole les points (0,1) et (1,3).

Exercice 4: 1. Construire le polynôme de Lagrange P_3 qui interpole les points (-1, 2), (0, 1), (1, 2) et (2, 3).

2. Soit Q_2 le polynôme de Lagrange qui interpole les points (-1,2), (0,1), (1,2). Montrer qu'il existe un réel λ tel que :

$$Q(x) - P(x) = \lambda(x+1)x(x-1)$$

Exercice 5: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 1 + x^3$:

- 1. Calculer le polynôme P_0 qui interpole f au point d'abscisse $x_0 = 0$;
- 2. Calculer le polynôme P_1 qui interpole f aux points d'abscisse $x_0=0$ et $\ x_1=1$;
- 3. Calculer le polynôme P_2 qui interpole f aux points d'abscisse $x_0=0,\,x_1=1$ et $x_2=2$;
- 4. Calculer le polynôme P_3 qui interpole f aux points d'abscisse $x_0=0,\,x_1=1,\,x_2=2$ et $x_3=3$;
- 5. Calculer le polynôme P_n , n > 3 qui interpole f aux points d'abscisse $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, \cdots , et $x_n = n$.

Exercice 6 : L'espérance de vie dans un pays a évoluée dans le temps selon le tableau suivant :

année	1975	1980	1985	1990
espérence de vie	72,8	74, 2	75, 2	76, 4

Utiliser l'interpolation de Lagrange pour estimer l'espérance de vie en 1977, 1983 et 1988.

Exercice 7: (Interpolation et polynômes de Tchebychev)

- 1. Rappeler la définition des polynômes de Tchebychev sur $\left[-1,1\right]$;
- 2. Donner la relation de recurrence entre ces polynômes et calculer ${\cal T}_4$;
- 3. Calculer les racines de T_4 dans [-1, 1] puis déduire les meilleurs noeuds d'interpolation sur l'intervalle [0, 3].

Exercice 8: Soit f la fonctions définie sur \mathbb{R} par :

$$f(x) = \frac{1}{1+x^2}$$

- 1. Déterminer P_2 le polynôme d'interpolation de f sur les points support : -1, 0 et 1;
- 2. Rappeler la formule de l'erreur et donner une majoration de $|E(x)| = |f(x) P_2(x)|$;
- 3. Évaluer l'erreur commise en considérant les points support : -2, -1, 0, 1 et 2.

Exercice 9 : Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^2$$

- 1. Calculer la valeur exacte de $I = \int_0^1 f(x) dx$ puis des valeurs approchées en utilisant les méthodes suivantes : rectangle à droit, rectangle à gauche, rectangle au milieu et du trapèze(un) ;
- 2. Comparer chacune des valeurs approchées avec la valeur exacte et expliquer en utilisant des représentations graphiques.

Exercice 10 : Estimer $\int_0^{5/2} f(x) dx$ à partir des données suivantes :

\boldsymbol{x}	0	1/2	1	3/2	2	5/2
f(x)	$\frac{3}{2}$	2	2	1,6364	1,2500	0,9565

en utilisant:

- 1. La méthode des rectangles à gauche composite;
- 2. La méthode des rectangles à droite composite;
- 3. La méthode des trapèzes composite.

Exercice 11: 1. Estimer $\int_0^{\pi} \sin(x) dx$ en utilisant la méthode des trapèzes composite avec 8 et puis 16 sous-intervalles;

- 2. Estimer $\int_0^{\pi} \sin(x) dx$ en utilisant la méthode de Newton-cotes (n=4);
- 3. Utiliser la méthode de Newton pour calculer P_3 le polynôme d'interpolation de f, puis déduire une estimation de $\int_0^\pi \sin(x) dx$.

Exercice 12 : On considère l'intégrale $I = \int_1^2 \frac{1}{x} dx$

- 1. Calculer la valeur exacte de I;
- 2. Évaluer numériquement cette intégrale par la méthode des trapèzes avec m=3 sous-intervalles;
- 3. Pourquoi la valeur numérique obtenue à la question précédente est-elle supérieure à $\ln(2)$? Est-ce vrai quelque soit m ? Justifier la réponse (On pourra s'aider par un dessin) ;
- 4. Quel nombre de sous-intervalles m faut-il choisir pour avoir une erreur inférieure à 10^{-4} ? On rappelle que l'erreur de quadrature associée s'écrit, si $f \in C^2([a,b])$:

$$|E_m| = \left| \frac{(b-a)^2}{12m^2} f''(\xi) \right|, \xi \in]a, b[$$

Exercice 13: (Méthode de Simpson)

- 1. Sachant que la méthode de Simpson est exactement la méthode de Newton-cotes avec n=2, calculer les poids ω_i , i=0,1,2 liés à cette quadrature;
- 2. Utiliser [1.] pour démontrer la formule de Simpson pour l'estimation de $\int_a^b f(x)dx$;
- 3. Donner la formule de Simpson composite avec n = 4 sur l'intervalle [0, 4];

Exercice 14 : Estimer, à l'aide des théorèmes du cours, le nombre de sous-intervalles n nécessaire pour obtenir une approximation de :

$$I = \int_0^1 \frac{4}{1+x^2} dx$$

avec une erreur moindre que 10^{-2} , en utilisant :

- 1. La méthode du point milieu combinée;
- 2. La méthode des trapèzes combinée;
- 3. La méthode de Simpson combinée;

Commenter les résulats trouvés.

Les documents relatifs à ce cours sont disponibles sur : www.ferrahi.cla.fr