

SMP3: Analyse Numérique et Algorithmique

Exercice 1:

- a) Vérifier que 9325 s'écrit bien $(10010001101101)_2$ en base 2.
- b) Écrire $(90)_{10}$ et $(97)_{10}$ en base 2. Effectuer, en opération binaire, la somme des deux nombres puis procéder à la vérification du résultat obtenu.

Exercice 2:

Soit f la fonction définie sur \mathbb{R}^+ par $f(x) = x^2 - 2$.

- a) Vérifier que l'équation f(x)=0 admet une et une seule solution \overline{x} sur l'intervalle [1,2]. Quelle est la valeur exacte de \overline{x} ?
- b) Écrire les algorithmes permettant le calcul d'une valeur approchée, de \overline{x} avec une précision $|f(x_k)| \le 10^{-3}$, en utilisant les méthodes : Dichotomie, Lagrange et Newton.
- c) Pour chaque méthode, calculer les quatre premières valeurs de la suite récurrente. Comparer et expliquer.

Exercice 3:

Soit $f:[0;1] \to \mathbb{R}$ une fonction continue strictement décroissante telle que f(0) = 1 et f(1) = -1.

- a) Sachant que f(0.6) = 0, déterminer les quatre premières termes de la suite récurrente définie par la méthode de la dichotomie sur l'intervalle [0; 1] pour l'approximation du zéro de f.
- b) Combien d'itérations faut-il effectuer pour approcher le zéro de f à 2^{-10} près ? à 10^{-10} près ?

Exercice 4:

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^4 + 2x^2 - 1$. On s'interesse à l'étude des racines de l'équation f(x) = 0. (Les valeurs approchées sont à présenter par défaut avec trois chiffres après la virgule).

- a) Montrer que l'équation f(x) = 0 admet une et une seule racine r dans [0, 1].
- b) Montrer en utilisant la méthode de **dichotomie** et en partant de [a, b] = [0, 1], que $r \in]0.5, 0.75[$.
- c) On souhaite maintenant utiliser la méthode de **Newton** sur]0.5, 0.75[. La suite de Newton est notée x_n . Faut-il choisir $x_0 = 0.5$ ou $x_0 = 0.75$? Expliquer votre choix. x_0 étant choisi, calculer les deux premières valeurs x_1 et x_2 .
- d) On souhaite maintenant appliquer la méthode de **la sécante de Lagrange** dont la suite est notée \overline{x}_n . Choisir convenablement les points de départ \overline{x}_0 et \overline{x}_1 et calculer, en suite, les valeurs suivantes \overline{x}_2 et \overline{x}_3 .
- e) Quel est le rang de l'erreur commise en considérant \overline{x}_3 comme valeur approchée de r?

Exercice 5:

A titre de rappel, la méthode de Newton pour résoudre l'équation f(x) = 0 sur [a; b] définie la suite récurrente suivante :

$$\begin{cases} x_0 & \text{bien choisie} \\ x_{n+1} == g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

On suppose que cette suite admet une limite sur [a;b] notée ℓ . Montrer que si f est 3 fois derivable sur [a;b] et que $f'(\ell) \neq 0$ alors la méthode de Newton est d'ordre 2 au moins.

Exercice 6:

On considère l'équation (E) donnée par : (E) $x^3 + 10x = 20 - 2x^2$.

- a) Écrire (E) sous forme de f(x) = 0 avec f une fonction à préciser.
- b) Vérifier que (E) admet une solution unique dans l'intervalle [1, 2].
- c) Utiliser la méthode de Dichotomie pour donner trois valeurs approchées $(x_0, x_1 \text{ et } x_2)$ de la solution de (E). En déduire une estimation de l'erreur commise en considérant x_3 .

- d) On considère le schéma itératif suivant : $\begin{cases} x_{n+1} = \frac{20}{x_n^2 + 2x_n + 10} \\ x_0 \in [1, 2] \end{cases}$ n = 0, 1, 2...
- e) Vérifier qu'on peut utiliser ce schéma pour trouver une valeur approchée de la solution de (E).
- f) Étudier la convergence de cette méthode, (on donne $\sup_{x \in [1,2]} \left| \frac{1-40(x+1)}{(x^2+2x+10)^2} \right| \leq \frac{40}{132}$).
- g) Pour $x_0 = 1$, calculer x_1 , x_2 et x_3 .

Exercice 7:

Soit (EF) l'équation suivante, dite de Ferrari : (EF) $x^4 + 6x^2 - 60x + 36 = 0$. a) Soit f la fonction telle que $f(x) = x^4 + 6x^2 - 60x + 36$. Utiliser la représentation graphique de f, ci-jointe, pour localiser deux racines de (EF) dans l'intervalle [0;4];

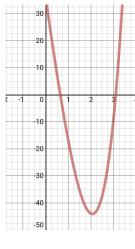
- b) Utiliser le théorème des valeurs intermédiaires pour localiser les deux racines x^* et \overline{x} de (EF) respectivement dans [0; 2] et [2; 4]
- c) Transformer l'équation (EF) en trois problèmes de recherche de points fixes :

$$(PF1) \qquad g_1(x)=x \text{ avec } g_1 \text{ est un polynôme},$$

$$(PF2) \qquad g_2(x)=x \text{ avec } g_2 \text{ est une fonction rationnelle},$$

$$(PF3) \qquad g_3(x)=x \text{ avec } g_3 \text{ une autre fonction à déterminer};$$

- d) Soit $x^* \in [0; 2]$ une racine de (EF). Écrire les schémas numériques pour calculer x^* en utilisant (PF1) puis (PF2). Exécuter les calculs des quatres premieres itérations de chacun des schémas;
- e) Étudier la convergence des deux schémas relatifs à (PF1) et à (PF2). Évaluer l'erreur commise lorsque le schéma converge.



Exercice 8 : Une modification de la méthode de Newton.

Dans la méthode de Newton, ayant à disposition les points x_0 ; \cdots , x_n ; on construit x_{n+1} en prenant l'intersection de la tangente au graphe de f en x_n avec l'axe des abscisses. Dans la méthode de Newton modifiée, ayant construit x_0 ; \cdots , x_n ; on construit x_{n+1} en prenant l'intersection avec l'axe des abscisses avec la droite passant par x_n et parallèle à la tangente au graphe de f en x_0 :

- a) On suppose que la fonction f est strictement croissante et strictement convexe sur [a; b] avec une racine dans a; b. On prend $a_0 = b$: Faites un dessin faisant apparaître les quatre premières valeurs données par la méthode de Newton modifiée. Comparer avec le schéma correspondant pour la méthode de Newton ordinaire;
- b) Donner l'expression de x_{n+1} en fonction de x_n ;
- c) Selon vous quels sont les avantages pratiques de cette modification? Ses inconvénients?

Exercice 9:

Soit $f:[a;b]\mathbb{R}$ strictement croissante telle que f(a)<0 et f(b)>0. Pour approcher la racine $r \in]a;b[$ de l'équation f(x) = 0; on construit une suite $(x_k)_{k \in \mathbb{N}}$ de la manière suivante $x_0 = a$; $x_1 = b$ et, pour $k \ge 2$; x_{k+1} est l'abscisse de l'intersection de la droite joignant les points $(x_k; f(x_k))$ et $(x_{k-1}; f(x_{k-1}))$ avec la droite d'équation y = 0;

- a) Construire sur une figure les quatre premiers points de la suite lorsque f est une fonction convexe. La construction vous parait-elle judicieuse lorsque f est décroissante convexe?
- b) Donner l'expression de x_{n+1} en fonction de x_n et x_{n-1} ;
- c) Dans une autre variante, on construit x_{k+1} non pas à partir de x_k et x_{k+1} mais à partir de x_k et x_{k0} où k_0 est le plus grand indice (< k) tel que $f(x_k)$ et $f(x_{k_0})$ soient de signes opposés. Donner un exemple pour lequel cette nouvelle suite ne coincide pas avec la précédente;
- d) Écrire un algorithme calculant les n premières valeurs de la suite $(x_k)_k$.

Equipe pédagogique du module : MM. Elhaji, Ferrahi, Hjiaj et Jarmouni

Des ressources pédagogiques supplémentaires sont disponibles sur le site : www.ferrahi.ma