

SMP3: Analyse Numérique et Algorithmique

Exercice 1 : Décrire les méthodes de la dichotomie et de Lagrange (dite aussi de la sécante) et les utiliser pour calculer le zéro de la fonction f dans l'intervalle [2;3] avec une précision de 10^{-2} :

$$f(x) = x^3 - 4x - 8.95$$

Exercice 2: Soit $f:[0;1] \to \mathbb{R}$ une fonction continue strictement décroissante telle que f(0)=1 et f(1)=-1.

1. Sachant que f(0.3)=0, déterminer la suite des premiers quatre itérés de la méthode de la dichotomie dans l'intervalle [0;1] pour l'approximation du zéro de f. On pourra utiliser le tableau ci-dessous :

k	a_k	x_k	b_k	signe de $f(a_k)$	signe de $f(x_k)$	signe de $f(b_k)$
0	0		1			
1						
2						
3						
4						

2. Combien d'itérations faut-il effectuer pour approcher le zéro de f à 10^{-10} près ? à 10^{-5} près ?

Exercice 3 : 1. Donner la suite définissant la méthode de Newton pour la recherche d'un zéro de fonction. Justifier l'expression de la suite ;

- 2. Écrire l'algorithme pour une convergence à $10^{-6}~{\rm près}$;
- 3. Déterminer l'ordre de convergence minimale de cette suite;
- 4. Application : $f(x) = -\ln(x) x$ et $x_0 = \frac{1}{2}$.

Exercice 4: On veut calculer le zéro de la fonction $f(x) = x^2 - 2$ dans l'intervalle [0; 2].

1. Déterminer la suite des premiers 3 itérés de la méthode de dichotomie dans l'intervalle [0; 2]. On pourra utiliser le tableau ci-dessous :

k	a_k	x_k	b_k	signe de $f(a_k)$	$f(x_k)$	signe de $f(x_k)$	signe de $f(b_k)$	$ x_k - \sqrt{2} $
0	0		2					
1								
\exists								

Combien de pas de dichotomie doit-on effectuer pour améliorer d'un ordre de grandeur la précision de l'approximation de la racine ?

2. On applique la méthode de Lagrange (où la sécante) : Écrire l'algorithme et l'utiliser pour remplir le tableau (on s'arrêtera au plus petit k qui vérifie $|f(x_k)| < 10^{-4}$). Le points x_0 et x_1 sont donnés. On pourra utiliser le tableau ci-dessous :

k	x_k	$f(x_k)$	$ x_k - \sqrt{2} $
0	1		
1	1,333333		
2			
:			

3. On applique la méthode de Newton : Écrire l'algorithme et l'utiliser pour remplir le tableau (on s'arrêtera au plus petit k qui vérifie $|f(x_k)| < 10^{-4}$). Le point de départ $x_0 = 1$ est donné. On pourra utiliser le tableau ci-dessous :

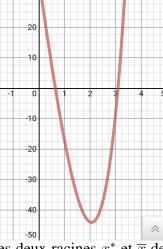
k	x_k	$f(x_k)$	$ x_k - \sqrt{2} $
0	1		
1			
2			
:			

Exercice 5 : Soit (EF) l'équation suivante, dite de Ferrari :

$$(EF) x^4 + 6x^2 - 60x + 36 = 0$$

Utiliser la représentation graphique, ci-jointe, de la fonction

1. $f(x) = x^4 + 6x^2 - 60x + 36$ pour localiser deux racines de (EF) dans l'intervalle [0;4];



- 2. Utiliser le théorème des valeurs intermédiaires pour localiser les deux racines x^* et \overline{x} de (EF) respectivement dans [0;2] et [2;4];
- 3. Transformer l'équation (EF) en problèmes de recherche de points fixes, sous les formes suivantes :

$$\begin{array}{ll} (PF1) & g_1(x)=x \text{ avec } g_1 \text{ est un polynôme}, \\ (PF2) & g_2(x)=x \text{ avec } g_2 \text{ est une fonction rationnelle}, \\ (PF3) & g_3(x)=x \text{ avec } g_3 \text{ une autre fonction à déterminer}; \end{array}$$

- 4. Soit $x^* \in [0; 2]$ une racine de (EF). Écrire les schémas numériques pour calculer x^* en utilisant (PF1) puis (PF2). Exécuter les calculs des quatres premieres itérations de chacun des schémas ;
- 5. Étudier la convergence des deux schémas relatifs à (PF1) et à (PF2). Évaluer l'erreur commise lorsque le schéma converge.

Exercice 6 : Soient X = 101 et Y = 61.

- 1. Donner les écritures binaires de X et de Y;
- 2. Effectuer les **opérations binaires** suivantes : X + Y et $X \times Y$. Vérifier les résultats obtenus.

Les documents relatifs à ce cours sont disponibles sur : www.ferrahi.cla.fr