

SMP3: Analyse Numérique et Algorithmique

-RATTRAPAGE — 17 février 2023 — 2022 - 2023 — 2020 - 2023 - 2023 - 2020

Présenter les résultats numériques avec quatre chiffres après la virgule (par défaut et sans arrondi)

Exercice 1 (2+2+2+1.5=7.5 POINTS): Soit f la fonction définie sur \mathbb{R} par $g(x) = \frac{3}{x-2}$.

- 1. Étudier la fonction g sur [-2,0], dresser son tableau de variations, remarquer que g est bijective et vérifier que le problème (PF) g(x) = x admet une solution unique r. Quelle est la valeur exacte de r?
- 2. Définir la suite $(x_n)_n$ donnée par **la méthode de point fixe**, pour obtenir une solution approchée de (PF), et vérifier qu'elle **convergente**. Évaluer $|x_{n+1} x_n|$ et déterminer **le nombre d'itérations** nécessaire pour obtenir une solution approchée avec une précision de $\varepsilon = 10^{-4}$.
- 3. Vérifier que (PF) peut être transformé en un problème de résolution d'un équation non linéaire de la forme (Eqt) f(x) = 0 avec f un polynôme de degré 2. En remarquant que r est solution de (Eqt), appliquer la méthode de **Dichotomie** sur l'intervalle [-1.75; 0] et calculer les deux premières valeurs approchées de r.
- 4. On définit la suite, $(y_n)_n$, des itérés données par : $\begin{cases} y_0 \in [-2,0] \\ y_{n+1} = \frac{y_n^2 + 3}{2y_n 2} \end{cases}$

Quelle méthode peut-on reconnaître ? Étudier la **convergence** de cette méthode.

Exercice 2 (2+2+1.5=5.5 POINTS): (Les trois questions sont indépendantes)

Soit f la fonction donnée par le tableau suivant :

	x_i	$x_0 = 0$	$x_1 = 1$	$x_2 = 2$	$x_3 = 3$
•	$f(x_i)$	1	2	9	28

- 1. Déterminer le **polynôme d'interpolation** de f sur la base des points x_0 , x_1 et x_2 en utilisant la méthode de **Lagrange**.
- 2. Déterminer le **polynôme d'interpolation** de f sur la base des points x_1 , x_2 et x_3 en utilisant la méthode de **Newton**.
- 3. Donner une valeur approchée de $\int_0^3 f(x)dx$ en utilisant la méthode **des trapèzes** (composite avec 3 trapèzes).

Exercice 3 (1.5+1.5+1.5=4.5 POINTS): Soit f une fonction de classe C^1 et (App) l'approximation :

(App)
$$\int_{-1}^{1} f(x) dx \approx \frac{1}{3} (f(-1) + 4f(x_0) + f(1))$$

- 1. Déterminer x_0 pour que (App) soit <u>exacte</u> pour les polynômes de degré 0 et 1 (On peut utiliser f(x) = 1 puis f(x) = x).
- 2. On suppose que $x_0 = 0$, en utilisant un **changement de variable affine**, dans $I = \int_a^b f(x) dx$, déduire une formule (Q) permettant de calculer une valeur approchée de I.
- 3. Vérifier que (Q) est une **quadrature** de type Newton-cotes, laquelle ? Déterminer **l'ordre** exacte de (Q).

Exercice 4 (1.5+2=3.5 Points) : Considérons le Problème de Cauchy (PC) donné par :

$$(PC) \quad \begin{cases} x'(t) = f(t,x(t)), & \text{ Pour } t > 0 \\ x(0) = x_0 & \text{donn\'e} \end{cases}$$

Soit h > 0 un pas de temps, on pose $t_n = nh$ pour $n \in \mathbb{N}$ ainsi $t_0 = 0$ et x_n une approximation de $x(t_n)$.

- 1. On suppose que (PC) admet une **solution unique**. **Intégrer** l'équation différentielle sur $[t_n; t_{n+1}]$ et utiliser méthode du **rectangle à gauche** pour exprimer x_{n+1} en fonction de x_n .
- 2. Intégrer l'équation différentielle sur $[t_n; t_{n+1}]$ et utiliser méthode du rectangle à droite pour exprimer x_{n+1} en fonction de x_n . Transformer le schéma implicite ainsi obtenu en un schéma explicite.