

SMP3: Analyse Numérique et Algorithmique

RATTRAPAGE — 21 février 2022 — 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 - 2022 – 2021 – 2021 –

Présenter les résultats avec quatre chiffres après la virgule (par défaut et sans arrondi)

Toutes les réponses doivent être justifiées et bien rédigées

Exercice 1 (2+3+3+3=11 POINTS). Soit (*E*) l'équation suivante : (*E*) $1 + x = e^{1-x^2}$

- 1. Écrire (E) sous forme d'une équation f(x) = 0 (f une fonction à déterminer). Vérifier que l'équation (E) admet **une et une seule solution**, notée \overline{r} , dans l'intervalle [0;1].
- 2. Écrire l'**algorithme** de la méthode de Dichotomie permettant d'obtenir une valeur approchée de \overline{r} avec une **précision** d'au moins ε .

Faire les calculs pour $\varepsilon=2^{-2}$, **localiser** la solution dans un intervalle $[a,b]\subset [0,1]$ et donner une valeur approchée de \overline{r} .

3. On souhaite appliquer la **méthode de Newton** sur l'intervalle [0,1] et on note $(t_n)_n$ la suite générée par cette méthode. Rappeler le **principe géométrique** de la méthode et exprimer t_{n+1} en fonction de t_n .

Calculer f''(0.5) et f''(0.75). Que peut-on dire par rapport à la **convergence** de cette méthode.

4. Sur l'intervalle [0;1], on considère **la modification de la méthode de Newton** qui consiste à remplacer la tangente T_n , au point $(t_n, f(t_n))$, par la droite D_n parallèle à la tangente T_0 (au point $(t_0, f(t_0))$ avec $f'(t_0) \neq 0$) et qui passe par $(t_n, f(t_n))$. Ainsi t_{n+1} est l'abscisse du point d'intersection de la droite D_n avec l'axe des abscisses (OX). Faire un schéma et exprimer t_{n+1} en fonction de t_n .

Exercice 2 (2.5+1.5=4 POINTS):

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x+1)^3 - 1$

- 1. En utilisant la **méthode directe**, déterminer le **polynôme d'interpolation** de f, noté P, sur la base des points : -1, 0 et 1. Utiliser P pour donner une valeur **approchée** de $f(-\frac{1}{2})$ et calculer la valeur **exacte de l'erreur** commise au point $x = -\frac{1}{2}$.
- 2. Sans faire de calcul supplémentaire, donner le **polynôme d'interpolation** de f, noté Q, sur la base des points : -2, -1, 0 et 1. Que peut-on dire de l'**erreur** au point $x = -\frac{1}{2}$ (par rapport à Q).

Exercice 3 (1.5+2+1.5=5 POINTS):

Soient $x_0 = -2$, $x_1 = 0$ et $x_2 = 1$ et soit f une fonction continue sur [-2; 1].

- 1. On donne $L_0(x) = \frac{1}{6}(x^2 x)$, déterminer les deux autres **polynômes caractéristiques de Lagrange** $L_1(x)$ et $L_2(x)$ puis formuler le **polynôme d'interpolation** de f sur la base des points x_0 , x_1 et x_2 (noté P).
- 2. On donne $\int_{-2}^{1} L_1(x) dx = \frac{9}{4}$, calculer $\int_{-2}^{1} L_0(x) dx$ et $\int_{-2}^{1} L_2(x) dx$. Puis, en **Intégrant** le polynôme P (sur l'intervalle [-2;1]) déduire une **quadrature** \widetilde{I} de l'intégrale $I = \int_{-2}^{1} f(t) dt$. On donne $\omega_0 = \frac{1}{4}$, préciser les deux autres **poids** ω_1 et ω_2 .
- 3. Utiliser la méthode **de Simpson** pour formuler une deuxième approximation de l'intégrale I (notée \widehat{I}). Expliquer la différence entre \widetilde{I} et \widehat{I} .