

## SMP3: Analyse Numérique et Algorithmique

-RATTRAPAGE ————04 avril 2021———2020 - 2021——

Présenter les résultats avec quatre chiffres après la virgule (par défaut et sans arrondi)

**Exercice 1** (0.75+1.25+3+3+2=10 POINTS): Soit (E) l'équation donnée par f(x) = 0 avec f, la fonction, définie sur  $\mathbb{R}$  telle que :  $f(x) = x^3 + x^2 + 3x - 3$ .

- 1. L'équation (E) admet-elle **une solution** dans l'intervalle [-1, 1]?
- 2. Vérifier que l'équation (E) admet une et une seule racine,  $\bar{x}$ , dans l'intervalle  $[a_0, b_0] = [0, 1]$ ;
- 3. Localiser la racine  $\overline{x}$  dans un intervalle [c,d] d'amplitude d-c=0.25. Déterminer le nombre d'itérations, p, nécessaire pour obtenir une solution approchée,  $x_p$ , avec une précision  $\varepsilon=10^{-6}$ ?
- 4. Montrer, en utilisant la méthode de Newton, que **l'algorithme** (Alg) permet de définir une suite  $(z_n)_n$  d'approximations de  $\overline{x}$ :

$$(Alg) \begin{cases} z_0 = 1 \\ \text{Tant que } |f(z_n)| > 10^{-5} \text{ Faire :} \\ z_{n+1} = \frac{2z_n^3 + z_n^2 + 3}{3z_n^2 + 2z_n + 3} \\ \text{Fin} \end{cases}$$

Identifier la précision recherchée et étudier la convergence de cette méthode. Calculer  $z_1$  et  $z_2$ ;

5. Transformer l'équation (E) en un problème de point fixe, de la forme h(x) = x, tel que h est une fonction rationnelle à déterminer (de la forme  $\frac{\text{constante}}{\text{polynôme de degré 2}}$ ).

Soit  $(t_n)_n$  la suite définie par :  $t_0 = 0.5$  et  $\hat{t}_n = h(t_{n-1})$ . Calculer  $t_1$  et  $t_2$ .

Est ce que la suite  $(t_n)_n$  est **convergente**? Si oui, déterminer sa limite.

On donne:

$$-0.5 \le \frac{-6x-3}{(x^2+x+3)^2} \le -0.3$$
 pour tout  $x \in [0,1]$ 

**Exercice 2** (2+3+2=7 POINTS): Soient  $x_0 = 0$ ,  $x_1 = 1$  et  $x_2 = 3$ 

- 1. Déterminer les polynômes caractéristiques de Lagrange  $L_i(x)$ , i = 0, 1, 2 et formuler  $P_2(x)$  le polynôme d'interpolation d'une fonction f sur la base des points  $x_0$ ,  $x_1$  et  $x_2$ .
- 2. Calculer  $\int_0^3 L_i(x) dx$ , i=0,1,2, puis utiliser le polynôme d'interpolation,  $P_2(x)$ , pour déterminer une **quadrature**,  $Q=3\sum_{i=0}^{i=3}\omega_i f(x_i)$ , de l'intégrale  $I=\int_0^3 f(x) dx$ . Quel est l'ordre de Q?
- 3. Utiliser la **méthode de Simpson** pour donner une deuxième **quadrature**  $\widetilde{I}$  permettant, aussi, d'approcher l'intégrale  $I = \int_0^3 f(x) dx$ . Comparer Q et  $\widetilde{I}$  puis expliquer les différences.

## **Exercice 3** (1+2=3 Points):

- 1. Rappeler la formule de quadrature approchant l'intégrale  $\int_c^d g(t)dt$  par la méthode **du trapèze** puis l'appliquer dans le cas g(t) = F(t, y(t));
- 2. On suppose que le problème de Cauchy, (P), admet une solution unique :

$$(P) \begin{cases} y' = F(t, y(t)) \\ y(x_0) = y_0 \end{cases}$$

Intégrer l'équation différentielle sur l'intervalle  $[\mathbf{t}_i, \mathbf{t}_{i+1}]$  puis utiliser la méthode du Trapèze et, pour tout indice j, l'approximation  $y(\mathbf{t}_j) \simeq y_j$  pour établir une relation entre  $y_{i+1}$  et  $y_i$  (en fonction de F,  $\mathbf{t}_i$  et  $\mathbf{t}_{i+1}$ ).

QS. (+1 POINT) Transformer la relation précédente en une méthode explicite.