

## SMP3: Analyse Numérique et Algorithmique

-Contrôle — 17 janvier 2022 — 2021 - 2022 —

Présenter les résultats avec quatre chiffres après la virgule (par défaut et sans arrondi)

Toutes les réponses doivent être justifiées et bien rédigées

## **Exercice 1** (2+1.5=3.5 POINTS):

Soit f la fonction définie sur  $\mathbb{R}$  par :  $f(x) = x^3$ 

- 1. En utilisant la **méthode de Newton**, déterminer le **polynôme d'interpolation** de f, noté P, sur la base des points : -2, -1 et 1. Utiliser P pour donner une valeur **approchée** de f(0).
- 2. Calculer la valeur **exacte de l'erreur** commise au point x=0 puis utiliser la formule du cours. Comparer et Expliquer.

## **Exercice 2** (2+3+3.5+3.5=12 POINTS):

Soit (E) l'équation suivante : (E)  $\ln(1+x) = 1 - x^2$ 

- 1. Étudier, sur l'intervalle [0; 2], les **variations** de la fonction f définie par  $f(x) = x^2 1 + \ln(1+x)$ . En déduire que l'équation (E) admet **une et une seule solution**, notée  $x^*$ , dans l'intervalle [0; 2];
- 2. Appliquer la méthode de **Dichotomie** pour **localiser** la solution  $x^*$  dans un intervalle [a;b] d'**amplitude** A=b-a=0.5. Déterminer le **nombre d'itérations** nécessaire pour pouvoir localiser la solution dans un intervalle d'amplitude A=0.0625;
- 3. On note  $(y_n)_n$  la suite générée par la **méthode de Newton**.
  - a) Écrire l'algorithme, de cette méthode, permettant d'obtenir une précision d'au moins  $10^{-6}$ ;
  - b) Justifier un bon choix de l'intervalle initial et de la valeur initiale  $y_0$  puis calculer  $y_1$ ;
  - c) Étudier la **convergence** de cette méthode et expliquer pourquoi on peut la considérer comme la meilleure méthode?
- 3. Sur l'intervalle [0.5; 1], on considère le **schéma numérique** définissant la suite  $(t_n)_n$  telle que :

$$\begin{cases} t_0 = 1 \\ t_n = g(t_{n-1}) = \sqrt{1 - \ln(1 + t_{n-1})} & n = 1, 2, \dots \end{cases}$$

On donne :  $\sup_{x \in [0.5;1]} |g'(x)| = 0.45$ 

a) **Vérifier** que ce schéma peut être utilisé pour déterminer une valeur approchée de  $x^*$  (la solution de (E)).

**Identifier** une méthode classique qui peut générée ce schéma et la suite  $(t_n)_n$ ;

- b) Étudier la **convergence**e de ce schéma;
- c) Formuler une **majoration** de l'erreur  $|t_n x^*|$  puis déterminer le **nombre d'itérations** nécessaire pour obtenir une précision d'au moins  $10^{-10}$ .

## **Exercice 3** (1+2+1.5=4.5 POINTS):

Soient  $x_0$  et  $x_1$  deux points tels que  $x_0 = -1$  et  $x_1 = 2$  et soit f une fonction continue sur [-1; 2].

- 1. Déterminer les deux **polynômes caractéristiques de Lagrange**  $L_0(x)$  et  $L_1(x)$  puis formuler le **polynôme d'interpolation** de f sur la base des points  $x_0$  et  $x_1$  (noté Q);
- 2. **Intégrer**, sur l'intervalle [-1;2], les deux polynômes de Lagrange et le polynôme Q et déduire une **quadrature**  $\widetilde{I}$  de l'intégrale  $I = \int_{-1}^{2} f(t)dt$ , en précisant les deux **poids**  $\omega_0$  et  $\omega_1$ . Peut-on associer cette quadrature à une **méthode classique**? Laquelle?
- 3. Utiliser la méthode **des trapèzes** (exactement 3 trapèzes) pour formuler une deuxième approximation l'intégrale I (notée  $\widehat{I}$ ). Sans faire de calcul supplémentaire, comparer  $\widetilde{I}$  et  $\widehat{I}$  et expliquer.