

CONTRÔLE — mercredi 29 janvier 2020 — 2019 - 2020

Exercice 1. (10 Points). (Les six questions sont indépendantes):

1. **Résoudre**, dans $\mathbb{Z} \times \mathbb{Z}$, **l'équation** suivante : 3u - 8v = 6 avec $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$. On a PGCD(3, -8) = PGCD(3, 8) = 1 divise 6, donc l'équation admet des solutions. Or, On peu remarquer, que $3 \times 10 - 8 \times 3 = 6$ (sinon, on peut utiliser l'algorithme généralisé d'Euclide). La soustraction des deux égalités donne :

$$3 \times (u - 10) - 8 \times (v - 3) = 0 \Longrightarrow 3 \times (u - 10) = 8 \times (v - 3)$$

On en déduit que 3 divise $8 \times (v-3)$ et comme 3 ne divise pas 8 alors, d'après le lemme de Cauchy, 3 divise v-3 c'est à dire que $v=3+3k, k\in\mathbb{Z}$. De la même manière : $u=10+8k, k\in\mathbb{Z}$. Donc:

$$S = \{10 + 8k, 3 + 3k\}, k \in \mathbb{Z}\}$$

2. Donner tous les nombres premiers, p, dont les carrés sont inférieurs à 617 ($p^2 \le 617$), décomposer 1200 et 1234 en facteurs premiers puis calculer : PGCD(1200; 1234) et PPCM(1200; 1234). On a: $2^2 = 4$, $3^2 = 9$, $5^2 = 25$, $7^2 = 49$, $11^2 = 121$, $13^2 = 169$, $17^2 = 289$, $19^2 = 361$, $23^2 = 529$, $27^2 = 729$. Donc, les nombres premiers sont : 2, 3, 5, 7, 11, 13, 17, 19 et 23.

D'autre part, on a : $1200 = 2 \times 600$, $600 = 2 \times 300$, $300 = 2 \times 150$, $150 = 3 \times 50$, $50 = 2 \times 25$, $25 = 5^2$, donc:

$$1200 = 2^4 \times 3 \times 5^2$$

et: $1234 = 2 \times 617$, or 617 est un nombre premier (n'est pas divisible pas les nombre premiers de 2 à 23, donc :

$$1200 = 2 \times 617$$

On en déduit :

$$PGCD(1200, 1234) = 2$$

et

$$PPCM(1200,1234) = \frac{1200 \times 1234}{2} = 740400$$

3. Le **trichlorure de phosphore** est un composé de formule chimique PCl_3 (P: Phosphore, Cl: Chlore). Préciser la **géométrie moléculaire** de ce composé et lister ses **éléments de symétrie**.

La molécule est sous forme d'une pyramide avec une base $(CL)_1(CL)_2(CL)_3$ sous forme d'un triangle équilatéral et un sommet P, les éléments de symétrique :

Rotation dans la plan de la base $(CL)_1(CL)_2(CL)_3$ (O est le centre du triangle):

 $C_3 = R(O, \frac{\pi}{3})$ Rotation du centre O et d'angle $\frac{\pi}{3}$ dans le centre positif : $C_{-3} = R(O, \frac{2\pi}{3})$ $R(O, \frac{-\pi}{3})$ Rotation du centre O et d'angle $\frac{2\pi}{3}$ dans le centre positif ou d'angle $\frac{-\pi}{3}$ dans le sens négatif,

 $Id = R(O, \pi)$ l'identité

$$C_{3}\begin{pmatrix} P \to P \\ (CL)_{1} \to (CL)_{2} \\ (CL)_{2} \to (CL)_{3} \\ (CL)_{3} \to (CL)_{1} \end{pmatrix} \qquad C_{-3}\begin{pmatrix} P \to P \\ (CL)_{1} \to (CL)_{3} \\ (CL)_{2} \to (CL)_{1} \\ (CL)_{3} \to (CL)_{2} \end{pmatrix} \qquad Id\begin{pmatrix} P \to P \\ (CL)_{1} \to CL_{1} \\ CL_{2} \to CL_{2} \\ CL_{3} \to CL_{3} \end{pmatrix}$$

Réflexion par rapport aux plans passant par le sommet P:

- σ_1 Réflexion par rapport au plan vertical qui passe par P et les milieu de $[CL_2, CL_3]$
- σ . Páflavion par rapport au plan vartical qui passa par P at les miliau de [CI, CI]

 σ_3 Réflexion par rapport au plan vertical qui passe par P et les milieu de $[CL_1, CL_2]$

$$\sigma_{1} \begin{pmatrix} P \to P \\ CL_{1} \to CL_{1} \\ CL_{2} \to CL_{3} \\ CL_{3} \to CL_{2} \end{pmatrix} \qquad \sigma_{2} \begin{pmatrix} P \to P \\ CL_{1} \to CL_{3} \\ CL_{2} \to CL_{2} \\ CL_{3} \to CL_{1} \end{pmatrix} \qquad \sigma_{1} \begin{pmatrix} P \to P \\ CL_{1} \to CL_{2} \\ CL_{2} \to CL_{1} \\ CL_{3} \to CL_{3} \end{pmatrix}$$

4. Soit f la fonction **périodique**, de période 2π , définie, sur $]-\pi,\pi]$, par : f(x)=x. Donner le développement en **série de Fourier** de cette fonction.

La fonction f est impaire dans $A_n = 0$ et en utilisant une intégration par parties, on a :

$$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = \frac{1}{\pi} \left(\left[-x \frac{\cos(nx)}{n} \right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos(nx) dx \right) = \frac{1}{\pi} \left(\left[-x \frac{\cos(nx)}{n} \right]_{-\pi}^{\pi} + \left[\frac{\sin(nx)}{n} \right]_{-\pi}^{\pi} \right)$$

$$B_n = \frac{1}{\pi} \left(-\pi \frac{\cos(n\pi)}{n} + \pi \frac{\cos(-n\pi)}{n} \right) = -\frac{2\pi(-1)^n}{n\pi} = (-1)^{n+1} \frac{2}{n}$$

Donc:

$$f(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{2}{n} \sin(nx)$$

5. Quelle est la nature de la série $\sum (2n)! (\frac{x^n}{(n!)^2})$? Déterminer son rayon de convergence. Série entière avec $a_n = \frac{(2n)!}{(n!)^2}$ et :

$$\frac{|a_{n+1}|}{|a_n|} = \frac{(2(n+1))!}{((n+1)!)^2} \times \frac{(n!)^2}{(2n)!} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2(n!)^2} \times \frac{(n!)^2}{(2n)!} = \frac{(2n+2)(2n+1)}{(n+1)^2} \to 4$$

 $Donc: R = \frac{1}{4}$

6. Compléter: $\frac{4}{10101}^2 + \overline{125}^{10} = \overline{\bullet \bullet \bullet}^8$

On a:

$$\overline{10101}^2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 21$$

Donc

$$\overline{10101}^2 + \overline{125}^{10} = 21 + 125 = \overline{146}^{10}$$

et:

$$146 = 8 \times 18 + 2$$
$$18 = 8 \times 2 + 2$$
$$2 = 8 \times 0 + 2$$

Finalement:

$$\overline{10101}^2 + \overline{125}^{10} = \overline{222}^8$$

Exercice II. (5 POINTS):

Soit \oplus la **loi** définie sur $\mathbb R$ par : $a \oplus b = (a^3 + b^3)^{\frac{1}{3}} = \sqrt[3]{a^3 + b^3}$ (pour tout a, b dans $\mathbb R$).

1. Comparer $a \oplus b$ et $b \oplus a$ puis conclure;

 $a \oplus b = (a^3 + b^3)^{\frac{1}{3}}$ et $b \oplus a = (b^3 + a^3)^{\frac{1}{3}}$ or, la somme est commutative sur \mathbb{R} donc:

$$b \oplus a = (b^3 + a^3)^{\frac{1}{3}} = (a^3 + b^3)^{\frac{1}{3}} = a \oplus b$$

On en déduite que la loi \oplus est commutative.

2. Montrer que (\mathbb{R}, \oplus) est un groupe Abelien;

Loi interne : Nous avons pour a et b dans \mathbb{R} , a^3 , b^3 , a^3 , b^3 , a^3+b^3 et $(a^3+b^3)^{\frac{1}{3}}$ sont respectivement dans \mathbb{R} (en utilisant les propriétés des lois sur \mathbb{R}) et par conséquent la loi est interne.

Élément neutre : On a : $a \oplus 0 = 0 \oplus a = (0^3 + a^3)^{\frac{1}{3}} = (a^3)^{\frac{1}{3}} = a$ donc 0 est élément neutre.

Associativité : On a pour a, b et c dans \mathbb{R} en utilisant le fait que la somme + est une loi associative sur \mathbb{R} :

$$a \oplus (b \oplus c) = a \oplus (b^3 + c^3)^{\frac{1}{3}} = (a^3 + ((b^3 + c^3)^{\frac{1}{3}})^3)^{\frac{1}{3}} = (a^3 + (b^3 + c^3))^{\frac{1}{3}} = (a^3 + b^3 + c^3)^{\frac{1}{3}}$$
$$(a \oplus b) \oplus c = (a^3 + b^3)^{\frac{1}{3}} \oplus c = (((a^3 + b^3)^{\frac{1}{3}})^3 + c^3)^{\frac{1}{3}} = ((a^3 + b^3) + c^3)^{\frac{1}{3}} = (a^3 + b^3 + c^3)^{\frac{1}{3}}$$

Donc, la loi \oplus est associative.

Symétrique : Si b est symétrique de a alors $a \oplus b = b \oplus a = 0$ donc :

$$(a^3 + b^3)^{\frac{1}{3}} = 0 \Longrightarrow a^3 + b^3 = 0 \Longrightarrow b^3 = -a^3 \Longrightarrow b^3 = (-a)^3 \Longrightarrow b = -a$$

Donc chaque élément a à un symétrique égal à -a.

Conclusion : (\mathbb{R}, \oplus) est un groupe associatif (ou Abelien).

3. Soit $f:(\mathbb{R},+) \longrightarrow (\mathbb{R},\oplus)$ l'application définie par : $f(x)=x^{\frac{1}{3}}=\sqrt[3]{x}$. Montrer que f est un isomorphisme de groupes.

Nous avons $(\mathbb{R}, +)$ et (\mathbb{R}, \oplus) sont deux groupes et pour x et y dans \mathbb{R} , on a :

$$f(x+y) = (x+y)^{\frac{1}{3}} = ((x^{\frac{1}{3}})^3 + (y^{\frac{1}{3}})^3)^{\frac{1}{3}} = ((f(x))^3 + (f(y))^3)^{\frac{1}{3}} = f(x) \oplus f(y)$$

Donc f est un morphisme de groupes. Or,

$$Kerf = \left\{x \in \mathbb{R} \mid f(x) = x^{\frac{1}{3}} = 0\right\} = \left\{0\right\}$$

$$Imf = \left\{y \in \mathbb{R} \mid \text{ il existe } x \in \mathbb{R} \text{ tel que } f(x) = y\right\}$$

$$Imf = \left\{y \in \mathbb{R} \mid \text{ il existe } x \in \mathbb{R} \text{ tel que } x^{\frac{1}{3}} = y\right\}$$

$$Imf = \left\{y \in \mathbb{R} \mid \text{ il existe } x \in \mathbb{R} \text{ tel que } x = y^3\right\} = \mathbb{R}$$

Donc f est injective et surjective. Par conséquent f est un isomorphisme.

4. Soit la \odot loi définie sur \mathbb{R} par $a \odot b = (a^2 + b^2)^{\frac{1}{2}} = \sqrt{a^2 + b^2}$. Est ce que (\mathbb{R}, \odot) est un groupe ? 1 n'as pas de symétrique car $1 \odot b = (1 + b^2)^{\frac{1}{2}} > 0$. Donc (\mathbb{R}, \odot) n'est pas un groupe.

Exercice III. (5 POINTS):

Soit:

$$f_n(x) = \left(\frac{1}{1+x^2}\right)^n$$
 $x \in \mathbb{R}$ et $n = 0, 1, 2, \dots$

1. Vérifier que $0 < \frac{1}{1+x^2} \le 1$, pour tout $x \in \mathbb{R}$;

On a:
$$1 + x^2 > 1$$
 donc $\frac{1}{1+x^2} \le 1$ et $0 < \frac{1}{1+x^2} \le 1$.

2. Étudier la convergence de la suite de fonctions $(f_n(x))_n$;

La suite de fonctions est une suite géométrique de raison $q = \frac{1}{1+x^2}$, deux cas à distinguer :

$$x = 0 \Longrightarrow q = 1 \text{ et } \lim f_n(x) = 1$$

 $x \neq 0 \Longrightarrow 0 < q < 1 \text{ donc } \lim f_n(x) = 0$

Donc la suite de fonctions converge simplement sur $\mathbb R$ vers la fonction f définie par :

$$f(x) = \begin{cases} 1 & \text{si x=0} \\ 0 & \text{sinon} \end{cases}$$

Remarquons que les fonctions $f_n(x)$ sont continues tandis que f n'est pas continue, on en déduit que la convergence n'est pas uniforme.

3. Soit $F_n(x) = \frac{x^2}{(1+x^2)^n}$, que peut-on dire de la **convergence simple** de la suite de fonctions $(F_n(x))_n$?

Remarquons que $F_n(x) = x^2 f_n(x)$ et par conséquent, $\lim F_n(x) = 0$ et la suite de fonctions $F_n(x)$ est simplement convergente sur \mathbb{R} vers la fonction F(x) = 0.

4. Calculer la somme partielle $S_n(x) = \sum_{k=0}^{k=n} F_k(x)$ puis étudier la convergence de la série $\sum F_n(x)$.

Si $x \neq 0$:

$$S_n(x) = \sum_{k=0}^{k=n} F_k(x) = \sum_{k=0}^{k=n} x^2 f_n(x) = x^2 \sum_{k=0}^{k=n} f_n(x) = x^2 \frac{1 - q^{n+1}}{1 - q} = x^2 \frac{1 - (\frac{1}{1 + x^2})^{n+1}}{1 - \frac{1}{1 + x^2}}$$

Donc: $\lim S_n(x) = x^2 \frac{1}{1 - \frac{1}{1 + x^2}} = 1 + x^2$ Si x = 0, $F_n(x) = 0$ et $S_n(x) = 0 \longrightarrow 0$ Donc: La série de terme général $F_n(x)$ converge simplement vers la fonction S définie par : S(0) = 0 et $S(x) = 1 + x^2$, remarquons que les fonctions $F_n(x)$ sont continues tandis que S n'est pas continue (car $\lim (1 + x^2) = 1 \ne S(0)$) par conséquence la convergence ne peut pas être uniforme et par conséquent, elle ne peut pas être normale! Par contre $F_n(x) > 0$ donc la série est aussi absolument convergente.

La série est simplement convergente et absolument convergente par contre, elle ne converge pas uniformément et elle ne converge pas normalement.

RÉDACTION ET PRÉSENTATION: 1 POINT.

Page1/1